The name of the academic discipline:
«Mathematical logic»

Code and name of	1-40 01 01 Software Engineering
specialty	
Training course	1
Semester of training	1
Number of class hours:	34
Lectures	18
Seminar classes	-
Practical classes	16
Laboratory classes	-
Form of current	credit
assessment	
(credit/differential	
credit/exam)	
Number of credits	2
Competencies to be	Mastering the academic discipline
formed	"Mathematical Logic" should ensure the formation of
	universal and basic professional competencies: use
	the forms, techniques, methods and laws of
	intellectual cognitive activity in the professional
	field; use the fundamental principles of computer
	science, mathematical logic and the theory of
	algorithms to effectively develop software

Summary of the academic discipline:

Statements. Logical operations on statements. Construction of complex sentences. Formulas of propositional logic. Equivalent formulas, tautologies, contradictions. Basic equivalences. Theorems on equivalent formulas. logical follow. Applications of the language of propositional logic (direct and inverse theorems, necessary and sufficient conditions, simplification of propositional systems, reasoning analysis, relay-contact circuits). Predicates and operations on them. Logical following and equivalence. Quantifiers. Types of theorems in the form of implication. Types of evidence. Boolean functions. Representations of boolean functions. Disjunctive normal forms (DNF and SDNF). Conjunctive normal forms (CNF and SKNF). Polynomial normal forms. Polynomial Zhegalkin. Closure and completeness of systems of Boolean functions. Minimization of boolean functions in the DNF class.